
Research

How UniswapV2 Swaps Work

Alex R. Mead

Abstract

This paper walks through the operations of a UniswapV2 swap, with the goal of expediting the
learning process for those interested in UniswapV2 engagement. To begin, a high level overview
of the UniswapV2 architecture is given: the Core and Periphery. Next, automated market maker
(AMM) token pairs, governed by the constant product formula, and their main use case, token
swaps, are discussed. Throughout the paper, mathematics, Solidity code, and on-chain transactions
are used for clear explanation of the topic.

Uniswap is a group of decentralized exchanges (DEX’s) originally created on Ethereum by
Hayden Adams in 2018. DEX’s are on-chain, automated market makers, that use pooled capital
to allow for counter-party free and permissionless swapping between on-chain assets. UniswapV2
came online in 2020 and added several new features, including arbitrary ERC20-ERC20 pairs.
The latest DEX, UniswapV3, came online in 2021 and added further functionality, most notably,
concentrated liquidity. This paper focuses exclusively on version 2, specifically a deep dive into
swapping between ERC20 tokens.

1 UniswapV2 - Architectural Overview

The UniswapV2 protocol is comprised of two smart contract clusters: the Core and the Periphery. The
Core has two basic smart contract types, a single Factory (0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f)
which was deployed by the Uniswap developers and many pairs, see Figure 1.

Each pair is a unique one-to-one mapping of ERC20 token types used for swaps. Pair contracts are
deployed by protocol users via Factory functions. There can only be one pair for any given ERC20
token combination. For example, if you want to swap WETH-LINK, there is only one UniswapV2 pair
in which to do that, located at 0xa2107FA5B38d9bbd2C461D6EDf11B11A50F6b974.

The Periphery contracts are not essential to the UniswapV2 protocol, however, offer convenience
and safety. Only advanced users should interact directly with Core smart contracts. The periphery
will be discussed briefly below.

2 UniswapV2 - Basic Swap Explained

The main purpose of the UniswapV2 protocol is to offer a convenient on-chain system for converting
one ERC20 token into another. As introduced above, this is accomplished using a smart contract
known as a pair, which is simply two pools of ERC20 tokens which users can trade between. As of
this writing there are more than 147,000 pairs in the UniswapV2 protocol.

1

https://docs.uniswap.org/contracts/v2/overview
https://github.com/Uniswap/v2-core.git
https://github.com/Uniswap/v2-periphery
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Factory.sol
https://etherscan.io/address/0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol
https://eips.ethereum.org/EIPS/eip-20
https://etherscan.io/address/0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
https://etherscan.io/address/0x514910771AF9Ca656af840dff83E8264EcF986CA
https://etherscan.io/address/0xa2107FA5B38d9bbd2C461D6EDf11B11A50F6b974

Figure 1: Relationship of UniswapV2 Factory and Token Pair contracts.

Constant Product Formula

The basic mechanics of an UniswapV2 pair are governed by the Constant Product Formula as shown
in equation 1

x ∗ y = k, (1)

where x and y each represent the reserves of the ERC20 tokens, token0 and token1 respectively. k is
a constant value1 that does not change throughout contract life-cycle2.

To better understand how a swap actually plays out, consider some block height, b ∈ Bpair, where
Bpair ⊂ N is the set of all blocks of the Ethereum Mainnet since the given pair was initialized. One
such pair might be WETH-LINK as mentioned above. Considering this pair at height b, there exists
some initial reserves rb0 and rb1 of token0 and token1, such that,

rb0 ∗ rb1 = kb. (2)

Now suppose further at block height b, a user would like to swap a certain amount of token0 (denoted,
token0in) for token1 which will be executed at the top of block b+ 1. How much of token1 (denoted,
token1out) would they receive?

To calculate this value, we first deduct the fee of 0.3% from the token0in value, leaving an effective
input of 0.997 ∗ token0in. Understanding the constant product formula must always hold for a given
pair, we can use equation 1 to show that,

rb0 ∗ rb1 = rb+1
0 ∗ rb+1

1 , (3)

where rb+1
0 , rb+1

1 are the new reserve values for token0 and token1 after the swap. Understanding the
reserve of token0 has only increased from the user input, we know,

rb+1
0 = rb0 + 0.997 ∗ token0in. (4)

Further, we can express the token1 output as the difference between initial and final state as,

token1out = rb1 − rb+1
1 . (5)

Using substitution for rb+1
0 from equation 4 into equation 3 we get,

rb0 ∗ rb1 = (rb0 + 0.997 ∗ token0in) ∗ rb+1
1 , (6)

which with simple algebra gives us,

rb+1
1 =

rb0 ∗ rb1
rb0 + 0.997 ∗ token0in

, (7)

1Note, all mathematical symbols can be found in the Symbols section on page 6.
2Technically with the 0.3% fee k does change, but this is not necessary to understand trade mechanics.

2

https://eips.ethereum.org/EIPS/eip-20

we finish the calculation by substitution and algebra using equations 5 and 7 to get token1out as,

token1out = rb1 −
rb0 ∗ rb1

rb0 + 0.997 ∗ token0in
. (8)

Notice, all values on the right hand side of the equation are known, thus it is a closed from calculation
for token1out given some input token0in and the initial pair conditions.

Solidity Smart Contract Code

The above mathematical expressions are realized in Solidity code in a function called, swap. The code
can be found in the Uniswap Github repository v2-core, in the file v2-core/contracts/UniswapV2Pair.sol.
The swap function itself has been extracted and reproduced in Appendix A. Let’s look through the
function line-by-line and check if it matches our reasoning above.

First thing to notice, is the user specifies the amount of both token0 and token1 they wish to
withdrawal (i.e. token0out, token1out), meaning typically one of these will equal zero. As is often the
case in code, the implementation of the swap does not follow the intuitive steps one might expect. We’ll
now outline the process, offering a line-by-line explanation using the same notation above mapped to
the variables in the code.

Beginning on line 160 and running through 169, several steps occur unrelated to the swap directly.
First, some “sanity checks” on the input values ensure at least some tokens are being requested, almost
in reverse order as compared to above,

token0out = amount0Out and token1out = amount1Out. (9)

Then current token reserves for the pair itself are queried, meaning line 161 effectively gives us,

rb0 = reserve0 and rb1 = reserve1, (10)

Next, lines 162-169 perform “house keeping,” checking there are enough reserves within the pair to
even perform the swap (lines: 161, 162), that the destination address is valid (line: 169), and also
initializes variables (lines: 164, 165, 167, 168).

Now, in lines 170 and 171, the tokens are in fact sent to the destination address optimistically.
Recall for our example above,

token0out = 0 and token1out =?, (11)

as the “input” token is the independent variable, more on this below when discussing on-chain data
and usage of the UniswapV2 Periphery code. Spoiler: token0out, token1out are calculated for the user
based on whatever type of swap they want, hence this step makes sense when considering the whole
system, but admittedly is confusing at this stage. Note, for a simple swap, line 172 is not executed.

Now, with the token transfer completed, the contract queries each token for the new pair balance
∗rb+1

0 = balance0, ∗rb+1
1 = balance1. Please note, these balances include the 0.3% fee, hence the

‘∗’, but knowing the balances are directly related to deposits and withdrawals, we derive the implied
formulas,

∗rb+1
0 = rb0 + token0in − token0out and ∗rb+1

1 = rb1 + token1in − token1out. (12)

The new balances are then used in lines 176 and 177 to “back calculate” the tokens the user deposits
to the pair, token0in, token1in.

Considering our example from above, equation 11 and 12, and lines 176 and 177, we can see the
following:

∗rb+1
0

?
> rb0 − token0out (13)

rb0 + token0in
?
> rb0 − token0out (14)

rb0 + token0in
?
> rb0 − 0, (15)

and knowing the user deposited a non-zero amount of token0, thus token0in > 0, which forces the
inequality to be true,

rb0 + token0in > rb0 ≡ True, (16)

3

https://github.com/Uniswap/v2-core.git

thus finally, the token input is,

token0in = ∗rb+1
0 − (rb0 − token0out). (17)

Moving along, line 178 checks to make sure at least some token0 or token1 is deposited. Now,
because all unknown values have been satisfied, a simple check to ensure the values are consistent with
the constant product formula is necessary. As mentioned earlier, this logical sequence is somewhat
counter intuitive3. First in checking compliance, the fee component component must be removed in
lines 181 and 182, giving

rb+1
0 = ∗rb+1

0 ∗ 1000− token0in ∗ 3 and rb+1
1 = ∗rb+1

1 ∗ 1000− token1in ∗ 3. (18)

This fee removal is necessary because the fee accumulates with the reserves, but is not part of the
actual constant product function calculation. The final step now requires checking an inequality for
compliance, as shown in line 182:

rb+1
0 ∗ rb+1

1

?
≥ rb0 ∗ rb1 ∗ 10002. (19)

Examining equation 19 one can see the constant product formula, with the two pool balances on each
side representing the initial state and final state4. Notice the inequality, not equality. Regardless, by
substituting equation 18 into 19 we get,

(∗rb+1
0 ∗ 1000− token0in ∗ 3) ∗ (∗rb+1

1 ∗ 1000− token1in ∗ 3)
?
≥ rb0 ∗ rb1 ∗ 10002. (20)

Noting token1in = 0 and expanding the terms results in,

∗rb+1
0 ∗ ∗rb+1

1 ∗ 10002 −∗ rb+1
1 ∗ 3000 ∗ token0in

?
≥ rb0 ∗ rb1 ∗ 10002. (21)

While equation 21 is a bit unwieldy, each term is known at this stage in the swap, hence if the proposed
trade is valid, the trade will execute. If not, the final require statement on line 183 will fail and the
entire state, including the optimistic transfer from above, will be rolled back.

Further manipulation of equation 21 using substitution and algebra can prove helpful to develop
intuitions about swap dynamics. It is encouraged for the reader to experiment along these lines to
gain more intuition.

In real-world swapping conditions, however, few traders actually use the pair contract directly.
More likely, they will use the Periphery contracts mentioned above. Next, we will examine an actual
swap on-chain which does just this.

UniswapV2 Swap On-Chain Example

UniswapV2 is divided into two clusters of smart contracts: Core and Periphery. For most users,
the Periphery is the recommended interaction interface. Examining the Periphery, a smart contract
refereed to as the Router (0x7a250d5630b4cf539739df2c5dacb4c659f2488d) is the point of entry at
which user should start.

The Router has several functions that represent all possible combinations of swaps, each with the
proper safe guards for modern smart contract interaction. For example, swapping some exact number
of tokenA for another tokenB (swapExactTokensForTokens()), or getting some exact number of tokenB
for tokenA (swapTokensForExactTokens()), along with combinations of ether and tokens as well.

To explore these functionalities, let’s examine a real swap between WETH and LINK using the
UniswapV2 Pair via the UniswapV2 Router02,
transaction: 0x135953b064429bd41403de10c0dcb39612455a0774bdaed371ae67e61254a0e3. Beginning
our examination, we see this transaction is sent to the UniswapV2 Router02, calling function, swapEx-
actTokensForTokens(), see Appendix B. Meaning, the swap intends to send in an exact amount of
WETH tokens and receive the resulting amount of LINK tokens. The number of LINK tokens the
transaction will generate is defined by the constant product function. To protect against manipulation

3In smart contracts, this is often done to save gas fees.
4Note, this notation is assuming state changes block-to-block for simplicity, however, in real swaps these states could

change several times per block and would instead be before and after any given transaction within a single block.

4

https://github.com/Uniswap/v2-core.git
https://github.com/Uniswap/v2-periphery
https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
https://etherscan.io/token/0x514910771af9ca656af840dff83e8264ecf986ca
https://etherscan.io/address/0xa2107FA5B38d9bbd2C461D6EDf11B11A50F6b974
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d
https://etherscan.io/tx/0x135953b064429bd41403de10c0dcb39612455a0774bdaed371ae67e61254a0e3

of the pair, both a minimum amount of tokens out and a deadline are included. Simply put, if the
executed trade results in less than the minimum number of tokens or is not executed by a certain time
in history, the swap will fail to execute.

Examining this specific swap (tx hash: 0x1359..e3) we see the WETH deposited is 0.03 eth, with
a minimum output of 6.0 LINK out with a time limit of about 10 minutes after initial submission.
Diving into the code, we see on line 231 a helper function is called to build a array of price data.
In this case, the helper function is solving equation 8 from above to determine the output of LINK
given WETH. This is a array because it is possible to link multiple swaps together, however, only one
is shown here. Notice now, we have both token0out = 0 and token1out. Which is exactly what the
UniswapV2 pair is expecting as we learned above.

Next, line 232 checks the minimum condition of the LINK out of the swap. Next, on line 233, a
subtle smart contract requirement occurs, in that WETH is transferred on behave of the user to the
pair. This is needed because if it were placed on the contract in a separate transaction than the swap,
it would be arbitraged away itself. This is the first transfer of ERC20 tokens in a possible series. But
for us here, this will be only one swap. Next, another private function on the Router is called, swap(),
see Appendix B.

As expected, the first control logic in swap() is a loop for each possible token swap, but is only
one swap here, WETH-LINK. Going further, we see lines 214-218 are purely “book keeping” to order
the tokens in the proper sequence for a swap with the pair and ensuring each destination address
is properly setup, including the final address of the calling account (i.e. Externally Owned Account
(EOA), or Smart Contract). Finally, lines 219-221 are the given token pair itself and it’s respective
.swap() function. This, is the same function as detailed above, with code snippet in Appendix A.

Checking the transaction details on Etherscan we can see each of these smart contracts clearly
being interacted with, from the UniswapV2 Router02, the WETH ERC20, Uniswap WETH-LINK
pair, then finally LINK ERC20. Examining the emitted event logs of the transaction make this clear.

To conclude, we can see the final transfer of LINK was a value of 6.93, which is clearly above the
minimum requested value of 6.05.

3 Conclusion

This paper attempts to shorten the “learning curve” for new users to UniswapV2. While constant
product formula based automated market makers (AMM) are simple in theory, following the logic
on-chain and also finding the execution code can be quite daunting for the beginner. Here, these steps
have been outlined for the reader in as clear and brief a manner as possible.

Acknowledgements

Thank you to Mat́ıas Andrade, Kyle Waters, Tanay Ved, Nate Maddrey, and Mudabbir Kaleem, all
of Coin Metrics, for their helpful reviews and comments. Any remaining errors or omissions are my
responsibility.

5Recall, smart contracts on the EVM use integer math. Further, ERC20’s have a decimal place value, that for LINK
is 18. Hence, the actual balance will appear as 6931371159474691587 ∼= 6.93 LINK.

5

https://etherscan.io/tx/0x135953b064429bd41403de10c0dcb39612455a0774bdaed371ae67e61254a0e3#eventlog
https://coinmetrics.io

Symbols

b ∈ B - a specific block height to consider

B - the set of all block heights for Mainnet

Bpair - the set of all block heights for which a given pair has existed.

N - the set of Natural numbers.

pair - a specific UniswapV2 trading pair, with ERC20 tokens token0 and token1

rb0, r
b
1 - reserve of token0, token1 at block height b for some pair

rb+1
0 , rb+1

1 - reserve of token0, token1 at block height b+ 1 for some pair, after a swap

∗rb+1
0 ,∗ rb+1

1 - the true token balance after a swap, it includes the accumulated fee of 0.3%

token0 - the ERC20 of a UniswapV2 pair with the lower numerical sort address

token0in - the quantity of token0 some user deposits into the UniswapV2 pair

token0out - the quantity of token0 some user receives from their UniswapV2 swap

token1 - the ERC20 of a UniswapV2 pair with the higher numerical sort address

token1in - the quantity of token1 some user deposits into the UniswapV2 pair

token1out - the quantity of token1 some user receives from their UniswapV2 swap

x, y, k - constant product formula variables

kb - constant product value at block height b

6

Appendix A

Source code from UniswapV2Pair.sol, the swap function.

159 function swap(uint amount0Out , uint amount1Out , address to, bytes calldata data) external lock {

160 require(amount0Out > 0 || amount1Out > 0, ’UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT ’);

161 (uint112 _reserve0 , uint112 _reserve1 ,) = getReserves (); // gas savings

162 require(amount0Out < _reserve0 && amount1Out < _reserve1 , ’UniswapV2: INSUFFICIENT_LIQUIDITY ’);

163

164 uint balance0;

165 uint balance1;

166 { // scope for _token {0,1}, avoids stack too deep errors

167 address _token0 = token0;

168 address _token1 = token1;

169 require(to != _token0 && to != _token1 , ’UniswapV2: INVALID_TO ’);

170 if (amount0Out > 0) _safeTransfer(_token0 , to, amount0Out); // optimistically transfer tokens

171 if (amount1Out > 0) _safeTransfer(_token1 , to, amount1Out); // optimistically transfer tokens

172 if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender , amount0Out , amount1Out , data);

173 balance0 = IERC20(_token0).balanceOf(address(this));

174 balance1 = IERC20(_token1).balanceOf(address(this));

175 }

176 uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;

177 uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;

178 require(amount0In > 0 || amount1In > 0, ’UniswapV2: INSUFFICIENT_INPUT_AMOUNT ’);

179 { // scope for reserve {0,1} Adjusted , avoids stack too deep errors

180 uint balance0Adjusted = balance0.mul (1000).sub(amount0In.mul(3));

181 uint balance1Adjusted = balance1.mul (1000).sub(amount1In.mul(3));

182 require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul (1000**2) , ’UniswapV2: K’);

183 }

184

185 _update(balance0 , balance1 , _reserve0 , _reserve1);

186 emit Swap(msg.sender , amount0In , amount1In , amount0Out , amount1Out , to);

187 }

7

Appendix B

Source code from UniswapV2Router02.sol, the swapExactTokensForTokens() function.

224 function swapExactTokensForTokens(

225 uint amountIn ,

226 uint amountOutMin ,

227 address [] calldata path ,

228 address to ,

229 uint deadline

230) external virtual override ensure(deadline) returns (uint[] memory amounts) {

231 amounts = UniswapV2Library.getAmountsOut(factory , amountIn , path);

232 require(amounts[amounts.length - 1] >= amountOutMin , ’UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT ’);

233 TransferHelper.safeTransferFrom(

234 path[0], msg.sender , UniswapV2Library.pairFor(factory , path[0], path [1]), amounts [0]

235);

236 _swap(amounts , path , to);

237 }

Source code from UniswapV2Router02.sol, the swap() function.

212 function _swap(uint[] memory amounts , address [] memory path , address _to) internal virtual {

213 for (uint i; i < path.length - 1; i++) {

214 (address input , address output) = (path[i], path[i + 1]);

215 (address token0 ,) = UniswapV2Library.sortTokens(input , output);

216 uint amountOut = amounts[i + 1];

217 (uint amount0Out , uint amount1Out) = input == token0 ? (uint (0), amountOut) : (amountOut , uint (0));

218 address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory , output , path[i + 2]) : _to;

219 IUniswapV2Pair(UniswapV2Library.pairFor(factory , input , output)).swap(

220 amount0Out , amount1Out , to , new bytes (0)

221);

222 }

223 }

8

	UniswapV2 - Architectural Overview
	UniswapV2 - Basic Swap Explained
	Conclusion

